Quinine Sulfate: Package Insert and Label Information

QUININE SULFATE- quinine sulfate capsule
Teva Pharmaceuticals USA, Inc.

WARNING: HEMATOLOGIC REACTIONS

Quinine sulfate use for the treatment or prevention of nocturnal leg cramps may result in serious and life-threatening hematologic reactions, including thrombocytopenia and hemolytic uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP). Chronic renal impairment associated with the development of TTP has been reported. The risk associated with quinine sulfate use in the absence of evidence of its effectiveness in the treatment or prevention of nocturnal leg cramps outweighs any potential benefit [see Indications and Usage (1) and Warnings and Precautions (5.1)].

1 INDICATIONS AND USAGE

Quinine sulfate capsules are an antimalarial drug indicated only for treatment of uncomplicated Plasmodium falciparum malaria. Quinine sulfate has been shown to be effective in geographical regions where resistance to chloroquine has been documented [see Clinical Studies (14) ].

Limitations of Use:

Quinine sulfate capsules are not approved for:

  • Treatment of severe or complicated P. falciparum malaria.
  • Prevention of malaria.
  • Treatment or prevention of nocturnal leg cramps [see Warnings and Precautions (5.1) ].

2 DOSAGE AND ADMINISTRATION

2.1 Treatment of Uncomplicated P. falciparum Malaria

For treatment of uncomplicated P. falciparum malaria in adults: Orally, 648 mg (two capsules) every 8 hours for 7 days [see Clinical Studies (14) ].

Quinine sulfate capsules should be taken with food to minimize gastric upset [see Clinical Pharmacology (12.3) ].

2.2 Renal Impairment

In patients with acute uncomplicated malaria and severe chronic renal impairment, the following dosage regimen is recommended: one loading dose of 648 mg quinine sulfate capsules, followed 12 hours later by maintenance doses of 324 mg every 12 hours.

The effects of mild and moderate renal impairment on the safety and pharmacokinetics of quinine sulfate are not known [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)].

2.3 Hepatic Impairment

Adjustment of the recommended dose is not required in mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment, but patients should be monitored closely for adverse effects of quinine. Quinine should not be administered in patients with severe (Child-Pugh C) hepatic impairment [see Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)].

3 DOSAGE FORMS AND STRENGTHS

324 mg capsules – opaque white hard gelatin capsules, imprinted in black “93” over “3002” on the cap portion and “93” over “3002” on the body portion of the capsule.

4 CONTRAINDICATIONS

Quinine sulfate capsules are contraindicated in patients with the following:

  • Prolonged QT interval. One case of a fatal ventricular arrhythmia was reported in an elderly patient with a prolonged QT interval at baseline, who received quinine sulfate intravenously for P. falciparum malaria [see Warnings and Precautions (5.4) ].
    • Known hypersensitivity reactions to quinine. These include, but are not limited to, the following [see Warnings and Precautions (5.7) ]:
    • Thrombocytopenia
    • Idiopathic thrombocytopenia purpura (ITP) and thrombotic thrombocytopenic purpura (TTP)
    • Hemolytic uremic syndrome (HUS)
    • Blackwater fever (acute intravascular hemolysis, hemoglobinuria, and hemoglobinemia)
  • Known hypersensitivity to mefloquine or quinidine: cross-sensitivity to quinine has been documented [see Warnings and Precautions (5.7) ].
    • Myasthenia gravis. Quinine has neuromuscular blocking activity, and may exacerbate muscle weakness.
    • Optic neuritis. Quinine may exacerbate active optic neuritis [see Adverse Reactions (6.1) ].

5 WARNINGS AND PRECAUTIONS

5.1 Use of Quinine Sulfate for Treatment or Prevention of Nocturnal Leg Cramps

Quinine sulfate may cause unpredictable serious and life-threatening hematologic reactions including thrombocytopenia and hemolytic-uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP) in addition to hypersensitivity reactions, QT prolongation, serious cardiac arrhythmias including torsades de pointes, and other serious adverse events requiring medical intervention and hospitalization. Chronic renal impairment associated with the development of TTP, and fatalities have also been reported. The risk associated with the use of quinine sulfate in the absence of evidence of its effectiveness for treatment or prevention of nocturnal leg cramps, outweighs any potential benefit in treating and/or preventing this benign, self-limiting condition [see Boxed Warning and Contraindications (4)].

5.2 Thrombocytopenia

Quinine-induced thrombocytopenia is an immune-mediated disorder. Severe cases of thrombocytopenia that are fatal or life threatening have been reported, including cases of HUS/TTP. Chronic renal impairment associated with the development of TTP has also been reported. Thrombocytopenia usually resolves within a week upon discontinuation of quinine. If quinine is not stopped, a patient is at risk for fatal hemorrhage. Upon re-exposure to quinine from any source, a patient with quinine-dependent antibodies could develop thrombocytopenia that is more rapid in onset and more severe than the original episode.

5.3 Hemolytic Anemia

Acute hemolytic anemia has been reported in patients receiving quinine for treatment of malaria, including patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The cause for the acute hemolytic anemia in quinine-treated patients with malaria and its potential relationship with G6PD deficiency has not been determined. Closely monitor hemoglobin and hematocrit during quinine treatment. Quinine should be discontinued if patients develop acute hemolytic anemia.

5.4 QT Prolongation and Ventricular Arrhythmias

QT interval prolongation has been a consistent finding in studies which evaluated electrocardiographic changes with oral or parenteral quinine administration, regardless of age, clinical status, or severity of disease. The maximum increase in QT interval has been shown to correspond with peak quinine plasma concentration [see Clinical Pharmacology (12.2) ]. Quinine sulfate has been rarely associated with potentially fatal cardiac arrhythmias, including torsades de pointes, and ventricular fibrillation.

Quinine sulfate has been shown to cause concentration-dependent prolongation of the PR and QRS interval. At particular risk are patients with underlying structural heart disease and preexisting conduction system abnormalities, elderly patients with sick sinus syndrome, patients with atrial fibrillation with slow ventricular response, patients with myocardial ischemia or patients receiving drugs known to prolong the PR interval (e.g., verapamil) or QRS interval (e.g., flecainide or quinidine) [see Clinical Pharmacology (12.2) ].

Quinine sulfate is not recommended for use with other drugs known to cause QT prolongation, including Class IA antiarrhythmic agents (e.g., quinidine, procainamide, disopyramide), and Class III antiarrhythmic agents (e.g., amiodarone, sotalol, dofetilide).

The use of macrolide antibiotics such as erythromycin should be avoided in patients receiving quinine sulfate. Fatal torsades de pointes was reported in an elderly patient who received concomitant quinine, erythromycin, and dopamine. Although a causal relationship between a specific drug and the arrhythmia was not established in this case, erythromycin is a CYP3A4 inhibitor and has been shown to increase quinine plasma levels when used concomitantly. A related macrolide antibiotic, troleandomycin, has also been shown to increase quinine exposure in a pharmacokinetic study [see Drug Interactions (7) ].

Quinine may inhibit the metabolism of certain drugs that are CYP3A4 substrates and are known to cause QT prolongation, e.g., astemizole, cisapride, terfenadine, pimozide, halofantrine and quinidine. Torsades de pointes has been reported in patients who received concomitant quinine and astemizole. Therefore, concurrent use of quinine sulfate with these medications, or drugs with similar properties, should be avoided [see Drug Interactions (7) ].

Concomitant administration of quinine sulfate with the antimalarial drugs, mefloquine or halofantrine, may result in electrocardiographic abnormalities, including QT prolongation, and increase the risk for torsades de pointes or other serious ventricular arrhythmias. Concurrent use of quinine sulfate and mefloquine may also increase the risk of seizures [see Drug Interactions (7) ].

Quinine sulfate should also be avoided in patients with known prolongation of QT interval and in patients with clinical conditions known to prolong the QT interval, such as uncorrected hypokalemia, bradycardia, and certain cardiac conditions [see Contraindications (4) ].

5.5 Concomitant Use of Rifampin

Treatment failures may result from the concurrent use of rifampin with quinine sulfate, due to decreased plasma concentrations of quinine, and concomitant use of these medications should be avoided [see Drug Interactions (7) ].

5.6 Concomitant Use of Neuromuscular Blocking Agents

The use of neuromuscular blocking agents should be avoided in patients receiving quinine sulfate. In one patient who received pancuronium during an operative procedure, subsequent administration of quinine resulted in respiratory depression and apnea. Although there are no clinical reports with succinylcholine or tubocurarine, quinine may also potentiate neuromuscular blockade when used with these drugs [see Drug Interactions (7) ].

5.7 Hypersensitivity

Serious hypersensitivity reactions reported with quinine sulfate include anaphylactic shock, anaphylactoid reactions, urticaria, serious skin rashes, including Stevens-Johnson syndrome and toxic epidermal necrolysis, angioedema, facial edema, bronchospasm, and pruritus.

A number of other serious adverse reactions reported with quinine, including thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), thrombocytopenia, immune thrombocytopenic purpura (ITP), blackwater fever, disseminated intravascular coagulation, leukopenia, neutropenia, granulomatous hepatitis, and acute interstitial nephritis may also be due to hypersensitivity reactions.

Quinine sulfate should be discontinued in case of any signs or symptoms of hypersensitivity [see Contraindications (4) ].

5.8 Atrial Fibrillation and Flutter

Quinine sulfate should be used with caution in patients with atrial fibrillation or atrial flutter. A paradoxical increase in ventricular response rate may occur with quinine, similar to that observed with quinidine. If digoxin is used to prevent a rapid ventricular response, serum digoxin levels should be closely monitored, because digoxin levels may be increased with use of quinine [see Drug Interactions (7) ].

5.9 Hypoglycemia

Quinine stimulates release of insulin from the pancreas, and patients, especially pregnant women, may experience clinically significant hypoglycemia.

6 ADVERSE REACTIONS

6.1 Overall

Quinine can adversely affect almost every body system. The most common adverse events associated with quinine use are a cluster of symptoms called “cinchonism”, which occurs to some degree in almost all patients taking quinine. Symptoms of mild cinchonism include headache, vasodilation and sweating, nausea, tinnitus, hearing impairment, vertigo or dizziness, blurred vision, and disturbance in color perception. More severe symptoms of cinchonism are vomiting, diarrhea, abdominal pain, deafness, blindness, and disturbances in cardiac rhythm or conduction. Most symptoms of cinchonism are reversible and resolve with discontinuation of quinine.

The following adverse reactions have been reported with quinine sulfate. Because these reactions have been reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

General: fever, chills, sweating, flushing, asthenia, lupus-like syndrome, and hypersensitivity reactions.

Hematologic: agranulocytosis, hypoprothrombinemia, thrombocytopenia, disseminated intravascular coagulation, hemolytic anemia; hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, idiopathic thrombocytopenic purpura, petechiae, ecchymosis, hemorrhage, coagulopathy, blackwater fever, leukopenia, neutropenia, pancytopenia, aplastic anemia, and lupus anticoagulant.

Neuropsychiatric: headache, diplopia, confusion, altered mental status, seizures, coma, disorientation, tremors, restlessness, ataxia, acute dystonic reaction, aphasia, and suicide.

Dermatologic: cutaneous rashes, including urticarial, papular, or scarlatinal rashes, pruritus, bullous dermatitis, exfoliative dermatitis, erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, fixed drug eruption, photosensitivity reactions, allergic contact dermatitis, acral necrosis, and cutaneous vasculitis.

Respiratory: asthma, dyspnea, pulmonary edema.

Cardiovascular: chest pain, vasodilatation, hypotension, postural hypotension, tachycardia, bradycardia, palpitations, syncope, atrioventricular block, atrial fibrillation, irregular rhythm, unifocal premature ventricular contractions, nodal escape beats, U waves, QT prolongation, ventricular fibrillation, ventricular tachycardia, torsades de pointes, and cardiac arrest.

Gastrointestinal: nausea, vomiting, diarrhea, abdominal pain, gastric irritation, and esophagitis.

Hepatobiliary: granulomatous hepatitis, hepatitis, jaundice, and abnormal liver function tests.

Metabolic: hypoglycemia and anorexia.

Musculoskeletal: myalgias and muscle weakness.

Renal: hemoglobinuria, renal failure, renal impairment, and acute interstitial nephritis.

Special Senses: visual disturbances, including blurred vision with scotomata, sudden loss of vision, photophobia, diplopia, night blindness, diminished visual fields, fixed pupillary dilatation, disturbed color vision, optic neuritis, blindness, vertigo, tinnitus, hearing impairment, and deafness.

7 DRUG INTERACTIONS

Table 1 below presents clinically significant drug interactions with quinine sulfate capsules.

Table 1: Clinically Significant Drug Interactions with quinine sulfate capsules

Drug(s)

Clinical Impact

Recommendation

Effects of Drugs and Other Substances on Quinine Pharmacokinetics

Antacids

Antacids containing aluminum and/or magnesium may delay or decrease absorption of quinine.

Concomitant administration of these antacids with quinine sulfate capsules should be avoided.

Antiepileptics (AEDs) (carbamazepine, phenobarbital, and phenytoin)

Carbamazepine, phenobarbital, and phenytoin are CYP3A4 inducers and may decrease quinine plasma concentrations if used concurrently with quinine sulfate capsules.

If concomitant administration with carbamazepine or phenobarbital cannot be avoided, frequent monitoring of anticonvulsant drug concentrations is recommended. Additionally, patients should be monitored closely for adverse reactions associated with these anticonvulsants.

Histamine H2-receptor blockers [cimetidine, ranitidine (nonspecific CYP450 inhibitors)]

When quinine is to be given concomitantly with a histamine H2-receptor blocker, the use of ranitidine is preferred over cimetidine. Although cimetidine and ranitidine may be used concomitantly with quinine sulfate capsules [see Clinical Pharmacology (12.3)].

Patients should be monitored closely for adverse events associated with quinine.

Ketoconazole (CYP3A4 inhibitor)

No change in the quinine sulfate capsules dosage regimen is necessary with concomitant ketoconazole [see Clinical Pharmacology (12.3)].

Patients should be monitored closely for adverse reactions associated with quinine.

Macrolide antibiotics (erythromycin, troleandomycin) (CYP3A4 inhibitors)

Increased quinine plasma levels have been observed when used concomitantly [see Clinical Pharmacology (12.3)].

Concomitant administration of macrolide antibiotics such as erythromycin or troleandomycin with quinine sulfate capsules should be avoided [see Warnings and Precautions (5.4)].

Rifampin (CYP3A4 inducer)

Decreased quinine plasma levels have been observed when used concomitantly [see Clinical Pharmacology (12.3)].

Concomitant administration of rifampin with quinine sulfate capsules should be avoided [see Warnings and Precautions (5.5)].

Ritonavir

Increased quinine plasma levels have been observed when used concomitantly [see Clinical Pharmacology (12.3)].

Concomitant administration of ritonavir with quinine sulfate capsules should be avoided.

Tetracycline

Tetracycline may be concomitantly administered with quinine sulfate capsules [see Clinical Pharmacology (12.3)].

Patients should be monitored closely for adverse reactions associated with quinine sulfate.

Theophylline or aminophylline

No change in the quinine sulfate capsules dosage regimen is necessary with concomitant theophylline or aminophylline [see Clinical Pharmacology (12.3)].

Patients should be monitored closely for adverse reactions associated with quinine.

Urinary alkalizers (acetazolamide, sodium bicarbonate)

Urinary alkalinizing agents may increase plasma quinine concentrations.

Use caution if using concomitantly.

Effects of Quinine on the Pharmacokinetics of Other Drugs

Anticonvulsants (carbamazepine, phenobarbital, and phenytoin)

Carbamazepine, phenobarbital, and phenytoin are CYP3A4 inducers and may decrease quinine plasma concentrations if used concurrently with quinine sulfate capsules [see Clinical Pharmacology (12.3)].

If concomitant administration with carbamazepine or phenobarbital cannot be avoided, frequent monitoring of anticonvulsant drug concentrations is recommended. Patients should be monitored closely for adverse reactions associated with these anticonvulsants.

Astemizole (CYP3A4 substrate)

Elevated plasma astemizole concentrations were reported in a subject who experienced torsades de pointes after receiving three doses of quinine sulfate for nocturnal leg cramps concomitantly with chronic astemizole 10 mg/day.

The concurrent use of quinine sulfate capsules with astemizole and other CYP3A4 substrates with QT prolongation potential (e.g., cisapride, terfenadine, halofantrine, pimozide and quinidine) should also be avoided [see Warnings and Precautions (5.4)].

Atorvastatin (CYP3A4 substrate)

Rhabdomyolysis with acute renal failure secondary to myoglobinuria was reported in a patient taking atorvastatin administered with a single dose of quinine. Quinine may increase plasma concentrations of atorvastatin, thereby increasing the risk of myopathy or rhabdomyolysis. Thus, clinicians considering combined therapy of quinine sulfate capsules with atorvastatin or other HMG-CoA reductase inhibitors (“statins”) that are CYP3A4 substrates (e.g., simvastatin, lovastatin) should carefully weigh the potential benefits and risks of each medication. If quinine sulfate capsules is used concomitantly with any of these statins, lower starting and maintenance doses of the statin should be considered.

Patients should also be monitored closely for any signs or symptoms of muscle pain, tenderness, or weakness, particularly during initial therapy. If marked creatine phosphokinase (CPK) elevation occurs or myopathy (defined as muscle aches or muscle weakness in conjunction with CPK values >10 times the upper limit of normal) is diagnosed or suspected, atorvastatin or other statin should be discontinued.

Desipramine (CYP2D6 substrate)

Quinine may inhibit the metabolism of drugs that are CYP2D6 substrates if used at antimalarial doses (greater than or equal to 600 mg) [see Clinical Pharmacology (12.3)].

Patients taking medications that are CYP2D6 substrates with quinine sulfate capsules should be monitored closely for adverse reactions associated with these medications.

Digoxin (P-gp substrate)

Digoxin levels may be increased with use of quinine [see Clinical Pharmacology (12.3)].

If quinine sulfate capsules are administered to patients receiving digoxin, plasma digoxin concentrations should be closely monitored, and the digoxin dose adjusted, as necessary [see Warnings and Precautions (5.8)].

Mefloquine

The concomitant administration of mefloquine and quinine sulfate capsules may produce electrocardiographic abnormalities (including QTc prolongation) and may increase the risk of seizures [see Clinical Pharmacology (12.3)].

Avoid concomitant use [see Warnings and Precautions (5.4)].

Neuromuscular blocking agents (pancuronium, succinylcholine, tubocurarine)

Quinine may also enhance the neuromuscular blocking effects of succinylcholine and tubocurarine [see Clinical Pharmacology (12.3)].

Avoid concomitant use [see Warnings and Precautions (5.6)].

Ritonavir

Ritonavir has significant effect on quinine pharmacokinetics [see Clinical Pharmacology (12.3)].

The concomitant administration of quinine sulfate capsules with ritonavir should be avoided.

Theophylline or aminophylline (CYP1A2 substrate)

Increased quinine plasma levels when used concomitantly [see Clinical Pharmacology (12.3)].

If quinine sulfate capsules are co- administered to patients receiving theophylline or aminophylline, plasma theophylline concentrations should be monitored frequently to ensure therapeutic concentrations.

Warfarin and oral anticoagulants

Cinchona alkaloids, including quinine, may have the potential to depress hepatic enzyme synthesis of vitamin K-dependent coagulation pathway proteins and may enhance the action of warfarin and other oral anticoagulants. Quinine may also interfere with the anticoagulant effect of heparin.

In patients receiving these anticoagulants, the prothrombin time (PT), partial thromboplastin time (PTT), or international normalization ratio (INR) should be closely monitored as appropriate, during concurrent therapy with quinine sulfate capsules.

Drug/Laboratory Interactions

Quinine may produce an elevated value for urinary 17-ketogenic steroids when the Zimmerman method is used.

Quinine may interfere with urine qualitative dipstick protein assays as well as quantitative methods (e.g., pyrogallol red-molybdate).

Special attention to patients using quinine is needed to minimize errors in the interpretation of laboratory results.


Page 1 of 3 1 2 3

DrugInserts.com provides trustworthy package insert and label information about marketed drugs as submitted by manufacturers to the US Food and Drug Administration. Package information is not reviewed or updated separately by DrugInserts.com. Every individual package label entry contains a unique identifier which can be used to secure further details directly from the US National Institutes of Health and/or the FDA.

As the leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. Our material is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2021. All Rights Reserved.