Olanzapine: Package Insert and Label Information (Page 6 of 8)

10 OVERDOSAGE

10.1 Human Experience

In premarketing trials involving more than 3100 patients and/or normal subjects, accidental or intentional acute overdosage of olanzapine was identified in 67 patients. In the patient taking the largest identified amount, 300 mg, the only symptoms reported were drowsiness and slurred speech. In the limited number of patients who were evaluated in hospitals, including the patient taking 300 mg, there were no observations indicating an adverse change in laboratory analytes or ECG. Vital signs were usually within normal limits following overdoses.

In postmarketing reports of overdose with olanzapine alone, symptoms have been reported in the majority of cases. In symptomatic patients, symptoms with ≥ 10% incidence included agitation/aggressiveness, dysarthria, tachycardia, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma. Among less commonly reported symptoms were the following potentially medically serious reactions: aspiration, cardiopulmonary arrest, cardiac arrhythmias (such as supraventricular tachycardia and 1 patient experiencing sinus pause with spontaneous resumption of normal rhythm), delirium, possible neuroleptic malignant syndrome, respiratory depression/arrest, convulsion, hypertension, and hypotension. Eli Lilly and Company has received reports of fatality in association with overdose of olanzapine alone. In 1 case of death, the amount of acutely ingested olanzapine was reported to be possibly as low as 450 mg of oral olanzapine; however, in another case, a patient was reported to survive an acute olanzapine ingestion of approximately 2 g of oral olanzapine.

10.2 Management of Overdose

The possibility of multiple drug involvement should be considered. In case of acute overdosage, establish and maintain an airway and ensure adequate oxygenation and ventilation, which may include intubation. Gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. The administration of activated charcoal (1 g) reduced the Cmax and AUC of oral olanzapine by about 60%. As peak olanzapine levels are not typically obtained until about 6 hours after dosing, charcoal may be a useful treatment for olanzapine overdose.

The possibility of obtundation, seizures, or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias.

There is no specific antidote to olanzapine. Therefore, appropriate supportive measures should be initiated. Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids and/or sympathomimetic agents. (Do not use epinephrine, dopamine, or other sympathomimetics with beta-agonist activity, since beta stimulation may worsen hypotension in the setting of olanzapine-induced alpha blockade.) Close medical supervision and monitoring should continue until the patient recovers.

For specific information about overdosage with lithium or valproate, refer to the Overdosage section of the package inserts for these products.

11 DESCRIPTION

Olanzapine USP is an atypical psychotropic agent that belongs to the thienobenzodiazepine class. The chemical designation is 2-methyl-4-(4-methyl-1-piperazinyl)-10H -thieno[2,3-b ] [1,5]benzodiazepine and has the following chemical structure:

Olanzapine structural formula

C17 H20 N4 S M.W. 312.44

Olanzapine USP is a yellow crystalline solid, which is practically insoluble in water. Each tablet, for oral administration, contains olanzapine equivalent to 2.5 mg (8 micromol), 5 mg (16 micromol), 7.5 mg (24 micromol), 10 mg (32 micromol) or 15 mg (48 micromol) and has the following inactive ingredients: anhydrous lactose, carrageenan, crospovidone, magnesium stearate, microcrystalline cellulose, and polyethylene glycol. In addition, the 2.5 mg, 5 mg, 7.5 mg and 10 mg tablets contain titanium dioxide, and the 15 mg tablets contain FD&C blue #2 aluminum lake.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

The mechanism of action of olanzapine, as with other drugs having efficacy in Schizophrenia, is unknown. However, it has been proposed that this drug’s efficacy in Schizophrenia is mediated through a combination of dopamine and serotonin type 2 (5HT2 ) antagonism. The mechanism of action of olanzapine in the treatment of acute manic or mixed episodes associated with Bipolar I Disorder is unknown.

12.2 Pharmacodynamics

Olanzapine binds with high affinity to the following receptors: serotonin 5HT2A/2C , 5HT6 (Ki = 4, 11, and 5 nM, respectively), dopamine D1-4 (Ki =11-31 nM), histamine H1 (Ki = 7 nM), and adrenergic α1 receptors (Ki = 19 nM). Olanzapine is an antagonist with moderate affinity binding for serotonin 5HT3 (Ki = 57 nM) and muscarinic M1-5 (Ki = 73, 96, 132, 32, and 48 nM, respectively). Olanzapine binds weakly to GABAA , BZD, and β-adrenergic receptors (Ki >10 μM).

Antagonism at receptors other than dopamine and 5HT2 may explain some of the other therapeutic and side effects of olanzapine. Olanzapine’s antagonism of muscarinic M1-5 receptors may explain its anticholinergic-like effects. Olanzapine’s antagonism of histamine H1 receptors may explain the somnolence observed with this drug. Olanzapine’s antagonism of adrenergic α1 receptors may explain the orthostatic hypotension observed with this drug.

12.3 Pharmacokinetics

Oral Administration, Monotherapy

Olanzapine is well absorbed and reaches peak concentrations in approximately 6 hours following an oral dose. It is eliminated extensively by first pass metabolism, with approximately 40% of the dose metabolized before reaching the systemic circulation. Food does not affect the rate or extent of olanzapine absorption. Pharmacokinetic studies showed that olanzapine tablets and olanzapine orally disintegrating tablets dosage forms of olanzapine are bioequivalent.

Olanzapine displays linear kinetics over the clinical dosing range. Its half-life ranges from 21 to 54 hours (5th to 95th percentile; mean of 30 hr), and apparent plasma clearance ranges from 12 to 47 L/hr (5th to 95th percentile; mean of 25 L/hr).

Administration of olanzapine once daily leads to steady-state concentrations in about 1 week that are approximately twice the concentrations after single doses. Plasma concentrations, half-life, and clearance of olanzapine may vary between individuals on the basis of smoking status, gender, and age [see Clinical Pharmacology (12.3) ].

Olanzapine is extensively distributed throughout the body, with a volume of distribution of approximately 1000 L. It is 93% bound to plasma proteins over the concentration range of 7 to 1100 ng per mL, binding primarily to albumin and α1-acid glycoprotein.

Metabolism and Elimination

Following a single oral dose of 14 C labeled olanzapine, 7% of the dose of olanzapine was recovered in the urine as unchanged drug, indicating that olanzapine is highly metabolized. Approximately 57% and 30% of the dose was recovered in the urine and feces, respectively. In the plasma, olanzapine accounted for only 12% of the AUC for total radioactivity, indicating significant exposure to metabolites. After multiple dosing, the major circulating metabolites were the 10-N-glucuronide, present at steady state at 44% of the concentration of olanzapine, and 4´-N-desmethyl olanzapine, present at steady state at 31% of the concentration of olanzapine. Both metabolites lack pharmacological activity at the concentrations observed.

Direct glucuronidation and cytochrome P450 (CYP) mediated oxidation are the primary metabolic pathways for olanzapine. In vitro studies suggest that CYPs 1A2 and 2D6, and the flavin-containing monooxygenase system are involved in olanzapine oxidation. CYP2D6 mediated oxidation appears to be a minor metabolic pathway in vivo , because the clearance of olanzapine is not reduced in subjects who are deficient in this enzyme.

Specific Populations

Renal Impairment

Because olanzapine is highly metabolized before excretion and only 7% of the drug is excreted unchanged, renal dysfunction alone is unlikely to have a major impact on the pharmacokinetics of olanzapine. The pharmacokinetic characteristics of olanzapine were similar in patients with severe renal impairment and normal subjects, indicating that dosage adjustment based upon the degree of renal impairment is not required. In addition, olanzapine is not removed by dialysis. The effect of renal impairment on metabolite elimination has not been studied.

Hepatic Impairment

Although the presence of hepatic impairment may be expected to reduce the clearance of olanzapine, a study of the effect of impaired liver function in subjects (n = 6) with clinically significant (Childs Pugh Classification A and B) cirrhosis revealed little effect on the pharmacokinetics of olanzapine.

Geriatric

In a study involving 24 healthy subjects, the mean elimination half-life of olanzapine was about 1.5 times greater in elderly (≥ 65 years) than in non-elderly subjects (< 65 years). Caution should be used in dosing the elderly, especially if there are other factors that might additively influence drug metabolism and/or pharmacodynamic sensitivity [see Dosage and Administration (2) ].

Gender

Clearance of olanzapine is approximately 30% lower in women than in men. There were, however, no apparent differences between men and women in effectiveness or adverse effects. Dosage modifications based on gender should not be needed.

Smoking Status

Olanzapine clearance is about 40% higher in smokers than in nonsmokers, although dosage modifications are not routinely recommended.

Race

In vivo studies have shown that exposures are similar among Japanese, Chinese and Caucasians, especially after normalization for body weight differences. Dosage modifications for race are, therefore, not recommended.

Combined Effects

The combined effects of age, smoking, and gender could lead to substantial pharmacokinetic differences in populations. The clearance in young smoking males, for example, may be 3 times higher than that in elderly nonsmoking females. Dosing modification may be necessary in patients who exhibit a combination of factors that may result in slower metabolism of olanzapine [see Dosage and Administration (2) ].

Adolescents (ages 13 to 17 years)

Pharmacokinetic information in pediatric patients is approved for Eli Lilly and Company’s olanzapine drug product labeling. However, due to Eli Lilly and Company’s marketing exclusivity rights, this drug product is not labeled with that pediatric information.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Oral carcinogenicity studies were conducted in mice and rats. Olanzapine was administered to mice in two 78 week studies at doses of 3, 10, 30/20 mg/kg/day (equivalent to 0.8 to 5 times the maximum recommended human daily oral dose on a mg/m2 basis) and 0.25, 2, 8 mg/kg/day (equivalent to 0.06 to 2 times the maximum recommended human daily oral dose on a mg/m2 basis). Rats were dosed for 2 years at doses of 0.25, 1, 2.5, 4 mg/kg/day (males) and 0.25, 1, 4, 8 mg/kg/day (females) (equivalent to 0.13 to 2 and 0.13 to 4 times the maximum recommended human daily oral dose on a mg/m2 basis, respectively). The incidence of liver hemangiomas and hemangiosarcomas was significantly increased in 1 mouse study in female mice dosed at 8 mg/kg/day (2 times the maximum recommended human daily oral dose on a mg/m2 basis). These tumors were not increased in another mouse study in females dosed at 10 or 30/20 mg/kg/day (2 to 5 times the maximum recommended human daily oral dose on a mg/m2 basis); in this study, there was a high incidence of early mortalities in males of the 30/20 mg/kg/day group. The incidence of mammary gland adenomas and adenocarcinomas was significantly increased in female mice dosed at ≥ 2 mg/kg/day and in female rats dosed at ≥ 4 mg/kg/day (0.5 and 2 times the maximum recommended human daily oral dose on a mg/m2 basis, respectively). Antipsychotic drugs have been shown to chronically elevate prolactin levels in rodents. Serum prolactin levels were not measured during the olanzapine carcinogenicity studies; however, measurements during subchronic toxicity studies showed that olanzapine elevated serum prolactin levels up to 4 fold in rats at the same doses used in the carcinogenicity study. An increase in mammary gland neoplasms has been found in rodents after chronic administration of other antipsychotic drugs and is considered to be prolactin mediated. The relevance for human risk of the finding of prolactin mediated endocrine tumors in rodents is unknown [see Warnings and Precautions (5.15) ].

Mutagenesis

No evidence of genotoxic potential for olanzapine was found in the Ames reverse mutation test, in vivo micronucleus test in mice, the chromosomal aberration test in Chinese hamster ovary cells, unscheduled DNA synthesis test in rat hepatocytes, induction of forward mutation test in mouse lymphoma cells, or in vivo sister chromatid exchange test in bone marrow of Chinese hamsters.

Impairment of Fertility

In an oral fertility and reproductive performance study in rats, male mating performance, but not fertility, was impaired at a dose of 22.4 mg/kg/day and female fertility was decreased at a dose of 3 mg/kg/day (11 and 1.5 times the maximum recommended human daily oral dose on a mg/m2 basis, respectively). Discontinuance of olanzapine treatment reversed the effects on male mating performance. In female rats, the precoital period was increased and the mating index reduced at 5 mg/kg/day (2.5 times the maximum recommended human daily oral dose on a mg/m2 basis). Diestrous was prolonged and estrous delayed at 1.1 mg/kg/day (0.6 times the maximum recommended human daily oral dose on a mg/m2 basis); therefore olanzapine may produce a delay in ovulation.

13.2 Animal Toxicology and/or Pharmacology

In animal studies with olanzapine, the principal hematologic findings were reversible peripheral cytopenias in individual dogs dosed at 10 mg/kg (17 times the maximum recommended human daily oral dose on a mg/m2 basis), dose-related decreases in lymphocytes and neutrophils in mice, and lymphopenia in rats. A few dogs treated with 10 mg/kg developed reversible neutropenia and/or reversible hemolytic anemia between 1 and 10 months of treatment. Dose-related decreases in lymphocytes and neutrophils were seen in mice given doses of 10 mg/kg (equal to 2 times the maximum recommended human daily oral dose on a mg/m2 basis) in studies of 3 months’ duration. Nonspecific lymphopenia, consistent with decreased body weight gain, occurred in rats receiving

22.5 mg/kg (11 times the maximum recommended human daily oral dose on a mg/m2 basis) for 3 months or 16 mg/kg (8 times the maximum recommended human daily oral dose on a mg/m2 basis) for 6 or 12 months. No evidence of bone marrow cytotoxicity was found in any of the species examined. Bone marrows were normocellular or hypercellular, indicating that the reductions in circulating blood cells were probably due to peripheral (non-marrow) factors.

14 CLINICAL STUDIES

When using olanzapine and fluoxetine in combination, also refer to the Clinical Studies section of the package insert for olanzapine and fluoxetine in combination.

14.1 Schizophrenia

Adults

The efficacy of oral olanzapine in the treatment of Schizophrenia was established in 2 short-term (6 week) controlled trials of adult inpatients who met DSM III-R criteria for Schizophrenia. A single haloperidol arm was included as a comparative treatment in 1 of the 2 trials, but this trial did not compare these 2 drugs on the full range of clinically relevant doses for both.

Several instruments were used for assessing psychiatric signs and symptoms in these studies, among them the Brief Psychiatric Rating Scale (BPRS), a multi-item inventory of general psychopathology traditionally used to evaluate the effects of drug treatment in Schizophrenia. The BPRS psychosis cluster (conceptual disorganization, hallucinatory behavior, suspiciousness, and unusual thought content) is considered a particularly useful subset for assessing actively psychotic schizophrenic patients. A second traditional assessment, the Clinical Global Impression (CGI), reflects the impression of a skilled observer, fully familiar with the manifestations of Schizophrenia, about the overall clinical state of the patient. In addition, 2 more recently developed scales were employed; these included the 30-item Positive and Negative Symptoms Scale (PANSS), in which are embedded the 18 items of the BPRS, and the Scale for Assessing Negative Symptoms (SANS). The trial summaries below focus on the following outcomes: PANSS total and/or BPRS total; BPRS psychosis cluster; PANSS negative subscale or SANS; and CGI Severity. The results of the trials follow:

(1) In a 6 week, placebo-controlled trial (n = 149) involving 2 fixed olanzapine doses of 1 and 10 mg/day (once daily schedule), olanzapine, at 10 mg/day (but not at 1 mg/day), was superior to placebo on the PANSS total score (also on the extracted BPRS total), on the BPRS psychosis cluster, on the PANSS Negative subscale, and on CGI Severity.

(2) In a 6 week, placebo-controlled trial (n = 253) involving 3 fixed dose ranges of olanzapine (5 ± 2.5 mg/day, 10 ± 2.5 mg/day, and 15 ± 2.5 mg/day) on a once daily schedule, the 2 highest olanzapine dose groups (actual mean doses of 12 and 16 mg/day, respectively) were superior to placebo on BPRS total score, BPRS psychosis cluster, and CGI severity score; the highest olanzapine dose group was superior to placebo on the SANS. There was no clear advantage for the high-dose group over the medium-dose group.

(3) In a longer-term trial, adult outpatients (n = 326) who predominantly met DSM-IV criteria for Schizophrenia and who remained stable on olanzapine during open-label treatment for at least 8 weeks were randomized to continuation on their current olanzapine doses (ranging from 10 to 20 mg/day) or to placebo. The follow-up period to observe patients for relapse, defined in terms of increases in BPRS positive symptoms or hospitalization, was planned for 12 months, however, criteria were met for stopping the trial early due to an excess of placebo relapses compared to olanzapine relapses, and olanzapine was superior to placebo on time to relapse, the primary outcome for this study. Thus, olanzapine was more effective than placebo at maintaining efficacy in patients stabilized for approximately 8 weeks and followed for an observation period of up to 8 months.

Examination of population subsets (race and gender) did not reveal any differential responsiveness on the basis of these subgroupings.

Adolescents

Clinical trial information in pediatric patients with schizophrenia is approved for Eli Lilly and Company’s olanzapine drug product labeling. However, due to Eli Lilly and Company’s marketing exclusivity rights, this drug product is not labeled with that pediatric information.

DrugInserts.com provides trustworthy package insert and label information about marketed drugs as submitted by manufacturers to the US Food and Drug Administration. Package information is not reviewed or updated separately by DrugInserts.com. Every individual package label entry contains a unique identifier which can be used to secure further details directly from the US National Institutes of Health and/or the FDA.

As the leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. Our material is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2023. All Rights Reserved.