Fenoglide: Package Insert and Label Information

FENOGLIDE- fenofibrate tablet
Santarus, Inc.

1 INDICATIONS AND USAGE

1.1 Primary Hypercholesterolemia and Mixed Dyslipidemia

FENOGLIDE® is indicated as adjunctive therapy to diet to reduce elevated low-density lipoprotein cholesterol (LDL-C), total cholesterol (Total-C), triglycerides (TG), and apolipoprotein B (Apo B), and to increase high-density lipoprotein (HDL-C) in adult patients with primary hypercholesterolemia or mixed dyslipidemia.

1.2 Severe Hypertriglyceridemia

FENOGLIDE is also indicated as adjunctive therapy to diet for treatment of adult patients with severe hypertriglyceridemia. Improving glycemic control in diabetic patients showing fasting chylomicronemia will usually reduce fasting triglycerides and eliminate chylomicronemia thereby obviating the need for pharmacologic intervention.

Markedly elevated levels of serum triglycerides (e.g., >2,000 mg/dL) may increase the risk of developing pancreatitis. The effect of FENOGLIDE therapy on reducing this risk has not been adequately studied.

1.3 Important Limitations of Use

Fenofibrate was not shown to reduce coronary heart disease morbidity and mortality in patients with type 2 diabetes mellitus [see Warnings and Precautions (5.1) ].

2 DOSAGE AND ADMINISTRATION

2.1 General Considerations

FENOGLIDE should be given with food to optimize the absorption of the medicine. Patients should be advised to swallow FENOGLIDE tablets whole. Do not crush, dissolve or chew tablets.

The initial treatment for dyslipidemia is dietary therapy specific for the type of lipoprotein abnormality. Excess body weight and excess alcoholic intake may be important factors in hypertriglyceridemia and should be addressed prior to any drug therapy. Physical exercise can be an important ancillary measure. Diseases contributory to hyperlipidemia, such as hypothyroidism or diabetes mellitus should be looked for and adequately treated. Estrogen therapy, thiazide diuretics and beta-blockers, are sometimes associated with massive rises in plasma triglycerides, especially in subjects with familial hypertriglyceridemia. In such cases, discontinuation of the specific etiologic agent may obviate the need for specific drug therapy of hypertriglyceridemia.

Lipid levels should be monitored periodically and consideration should be given to reducing the dosage of FENOGLIDE if lipid levels fall significantly below the targeted range.

Therapy should be withdrawn in patients who do not have an adequate response after two months of treatment with the maximum recommended dose of 120 mg once daily.

2.2 Primary Hypercholesterolemia or Mixed Dyslipidemia

The initial dose of FENOGLIDE is 120 mg per day.

2.3 Severe Hypertriglyceridemia

The initial dose is 40 to 120 mg per day. Dosage should be individualized according to patient response, and should be adjusted if necessary following repeat lipid determinations at 4 to 8 week intervals. The maximum dose is 120 mg per day.

2.4 Impaired Renal Function

Treatment with FENOGLIDE should be initiated at a dose of 40 mg per day in patients with mild to moderately impaired renal function, and increased only after evaluation of the effects on renal function and lipid levels at this dose. The use of FENOGLIDE should be avoided in patients with severe renal impairment [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)].

2.5 Geriatric Patients

Dose selection for the elderly should be made on the basis of renal function [see Use in Specific Populations (8.5) ].

3 DOSAGE FORMS AND STRENGTHS

40 mg: White to off-white oval tablets. Debossed “FLO”.
120 mg: White to off-white oval tablets. Debossed “FHI”.

4 CONTRAINDICATIONS

FENOGLIDE is contraindicated in:

patients with severe renal dysfunction, including those receiving dialysis [see Clinical Pharmacology (12.3)].
patients with active liver disease, including those with primary biliary cirrhosis and unexplained persistent liver function abnormalities [see Warnings and Precautions (5.2)].
patients with pre-existing gallbladder disease [see Warnings and Precautions (5.5)].
patients with a known hypersensitivity to fenofibrate [see Warnings and Precautions (5.9)].
nursing mothers [see Use in Specific Populations (8.2)].

5 WARNINGS AND PRECAUTIONS

5.1 Mortality and Coronary Heart Disease Morbidity

The effect of FENOGLIDE on coronary heart disease morbidity and mortality and non-cardiovascular mortality has not been established.

The Action to Control Cardiovascular Risk in Diabetes Lipid (ACCORD Lipid) trial was a randomized placebo-controlled study of 5,518 patients with type 2 diabetes mellitus on background statin therapy treated with fenofibrate. The mean duration of follow-up was 4.7 years. Fenofibrate plus statin combination therapy showed a non-significant 8% relative risk reduction in the primary outcome of major adverse cardiovascular events (MACE), a composite of non-fatal myocardial infarction, non-fatal stroke, and cardiovascular disease death (hazard ratio [HR] 0.92, 95% CI 0.79-1.08) (p=0.32) as compared to statin monotherapy. In a gender subgroup analysis, the hazard ratio for MACE in men receiving combination therapy versus statin monotherapy was 0.82 (95% CI 0.69-0.99), and the hazard ratio for MACE in women receiving combination therapy versus statin monotherapy was 1.38 (95% CI 0.98-1.94) (interaction p=0.01). The clinical significance of this subgroup finding is unclear.

The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a 5-year randomized, placebo-controlled study of 9,795 patients with type 2 diabetes mellitus treated with fenofibrate. Fenofibrate demonstrated a non-significant 11% relative reduction in the primary outcome of coronary heart disease events (hazard ratio [HR] 0.89, 95% CI 0.75-1.05, p=0.16) and a significant 11% reduction in the secondary outcome of total cardiovascular disease events (HR 0.89 [0.80-0.99], p=0.04). There was a non-significant 11% (HR 1.11 [0.95, 1.29], p=0.18) and 19% (HR 1.19 [0.90, 1.57], p=0.22) increase in total and coronary heart disease mortality, respectively, with fenofibrate as compared to placebo.

Because of chemical, pharmacological, and clinical similarities between fenofibrate, clofibrate, and gemfibrozil, the adverse findings in 4 large, randomized, placebo-controlled clinical studies with these other fibrate drugs may also apply to FENOGLIDE.

In the Coronary Drug Project, a large study of post myocardial infarction of patients treated for 5 years with clofibrate, there was no difference in mortality seen between the clofibrate group and the placebo group. There was however, a difference in the rate of cholelithiasis and cholecystitis requiring surgery between the two groups (3.0% vs. 1.8%).

In a study conducted by the World Health Organization (WHO), 5000 subjects without known coronary artery disease were treated with placebo or clofibrate for 5 years and followed for an additional one year. There was a statistically significant, higher age-adjusted all-cause mortality in the clofibrate group compared with the placebo group (5.70% vs. 3.96%, p≤0.01). Excess mortality was due to a 33% increase in non-cardiovascular causes, including malignancy, post-cholecystectomy complications, and pancreatitis. This appeared to confirm the higher risk of gallbladder disease seen in clofibrate-treated patients studied in the Coronary Drug Project.

The Helsinki Heart Study was a large (n=4,081) study of middle-aged men without a history of coronary artery disease. Subjects received either placebo or gemfibrozil for 5 years, with a 3.5 year open extension afterward. Total mortality was numerically higher in the gemfibrozil randomization group but did not achieve statistical significance (p=0.19, 95% confidence interval for relative risk G:P=0.91-1.64). Although cancer deaths trended higher in the gemfibrozil group (p=0.11), cancers (excluding basal cell carcinoma) were diagnosed with equal frequency in both study groups. Due to the limited size of the study, the relative risk of death from any cause was not shown to be different than that seen in the 9 year follow-up data from the WHO study (RR=1.29).

A secondary prevention component of the Helsinki Heart Study enrolled middle-aged men excluded from the primary prevention study because of known or suspected coronary heart disease. Subjects received gemfibrozil or placebo for 5 years. Although cardiac deaths trended higher in the gemfibrozil group, this was not statistically significant (hazard ratio 2.2, 95% confidence interval: 0.94-5.05).

5.2 Hepatotoxicity

Serious drug-induced liver injury (DILI), including liver transplantation and death, have been reported postmarketing with FENOGLIDE. DILI has been reported within the first few weeks of treatment or after several months of therapy and in some cases has reversed with discontinuation of FENOGLIDE treatment. Patients with DILI have experienced signs and symptoms including dark urine, abnormal stool, jaundice, malaise, abdominal pain, myalgia, weight loss, pruritus, and nausea. Many patients had concurrent elevations of total bilirubin, serum alanine transaminase (ALT), and aspartate transaminase (AST). DILI has been characterized as hepatocellular, chronic active, and cholestatic hepatitis, and cirrhosis has occurred in association with chronic active hepatitis.

In clinical trials, fenofibrate at doses equivalent to 87 mg to 130 mg fenofibrate daily (at the highest dose, comparable to FENOGLIDE, 120 mg) has been associated with increases in serum AST or ALT. The incidence of increases in transaminases may be dose related [see Adverse Reactions (6.1) ].

FENOGLIDE is contraindicated in patients with active liver disease, including those with primary biliary cirrhosis and unexplained persistent liver function abnormalities [see Contraindications (4) ]. Monitor patient’s liver function, including serum ALT, AST, and total bilirubin, at baseline and periodically for the duration of therapy with FENOGLIDE. Discontinue FENOGLIDE if signs or symptoms of liver injury develop or if elevated enzyme levels persist (ALT or AST > 3 times the upper limit of normal, or if accompanied by elevation of bilirubin). Do not restart FENOGLIDE in these patients if there is no alternative explanation for the liver injury.

5.3 Myopathy and Rhabdomyolysis

Fibrates increase the risk for myopathy and have been associated with rhabdomyolysis. The risk for serious muscle toxicity appears to be increased in elderly patients and in patients with diabetes, renal insufficiency, or hypothyroidism.

Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevations of creatine phosphokinase (CPK) levels.

Patients should be advised to report promptly unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever. CPK levels should be assessed in patients reporting these symptoms, and FENOGLIDE therapy should be discontinued if markedly elevated CPK levels occur or myopathy/myositis is suspected or diagnosed.

Data from observational studies indicate that the risk for rhabdomyolysis is increased when fibrates, in particular gemfibrozil, are co-administered with a statin. The combination should be avoided unless the benefit of further alterations in lipid levels is likely to outweigh the increased risk of this drug combination [see Clinical Pharmacology (12.3)].

Cases of myopathy, including rhabdomyolysis, have been reported with fenofibrates co-administered with colchicine, and caution should be exercised when prescribing fenofibrate with colchicine [see Drug Interactions (7.4)].

5.4 Serum Creatinine

Elevations in serum creatinine have been reported in patients on fenofibrate. These elevations tend to return to baseline following discontinuation of fenofibrate. The clinical significance of these observations is unknown. Monitor renal function in patients with renal impairment taking FENOGLIDE. Renal monitoring should also be considered for patients taking FENOGLIDE at risk for renal insufficiency such as the elderly and patients with diabetes.

5.5 Cholelithiasis

Fenofibrate, like clofibrate and gemfibrozil, may increase cholesterol excretion into the bile, leading to cholelithiasis. If cholelithiasis is suspected, gallbladder studies are indicated. FENOGLIDE therapy should be discontinued if gallstones are found.

5.6 Coumarin Anticoagulants

Caution should be exercised when anticoagulants are given in conjunction with FENOGLIDE because of the potentiation of coumarin-type anticoagulants in prolonging the prothrombin time/International Normalized Ratio (PT/INR). To prevent bleeding complications, frequent monitoring of PT/INR and dose adjustment of the anticoagulant are recommended until PT/INR has stabilized [see Drug Interactions (7.1)].

5.7 Pancreatitis

Pancreatitis has been reported in patients taking fenofibrate, gemfibrozil, and clofibrate. This occurrence may represent a failure of efficacy in patients with severe hypertriglyceridemia, a direct drug effect, or a secondary phenomenon mediated through biliary tract stone or sludge formation with obstruction of the common bile duct.

5.8 Hematologic Changes

Mild to moderate hemoglobin, hematocrit, and white blood cell decreases have been observed in patients following initiation of fenofibrate therapy. However, these levels stabilize during long-term administration. Thrombocytopenia and agranulocytosis have been reported in individuals treated with fenofibrate. Periodic monitoring of red and white blood cell counts is recommended during the first 12 months of FENOGLIDE administration.

5.9 Hypersensitivity Reactions

Acute Hypersensitivity

Anaphylaxis and angioedema have been reported postmarketing with fenofibrate. In some cases, reactions were life-threatening and required emergency treatment. If a patient develops signs or symptoms of an acute hypersensitivity reaction, advise them to seek immediate medical attention and discontinue fenofibrate.

Delayed Hypersensitivity

Severe cutaneous adverse drug reactions (SCAR), including Stevens-Johnson Syndrome, Toxic Epidermal Necrolysis, and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), have been reported postmarketing, occurring days to weeks after initiation of fenofibrate. The cases of DRESS were associated with cutaneous reactions (such as rash or exfoliative dermatitis) and a combination of eosinophilia, fever, systemic organ involvement (renal, hepatic, or respiratory). Discontinue fenofibrate and treat patients appropriately if SCAR is suspected.

5.10 Venothromboembolic Disease

In the FIELD trial, pulmonary embolus (PE) and deep vein thrombosis (DVT) were observed at higher rates in the fenofibrate than the placebo-treated group. Of 9,795 patients enrolled in FIELD, there were 4,900 in the placebo group and 4,895 in the fenofibrate group. For DVT, there were 48 events (1%) in the placebo group and 67 (1%) in the fenofibrate group (p = 0.074); and for PE, there were 32 (0.7%) events in the placebo group and 53 (1%) in the fenofibrate group (p = 0.022).

In the Coronary Drug Project, a higher proportion of the clofibrate group experienced definite or suspected fatal or nonfatal pulmonary embolism or thrombophlebitis than the placebo group (5.2% vs. 3.3% at five years; p <0.01).

5.11 Paradoxical Decreases in HDL Cholesterol Levels

There have been postmarketing and clinical trial reports of severe decreases in HDL cholesterol levels (as low as 2 mg/dL) occurring in diabetic and non-diabetic patients initiated on fibrate therapy. The decrease in HDL-C is mirrored by a decrease in apolipoprotein A1. This decrease has been reported to occur within 2 weeks to years after initiation of fibrate therapy. The HDL-C levels remain depressed until fibrate therapy has been withdrawn; the response to withdrawal of fibrate therapy is rapid and sustained. The clinical significance of this decrease in HDL-C is unknown. It is recommended that HDL-C levels be checked within the first few months after initiation of fibrate therapy. If a severely depressed HDL-C level is detected, fibrate therapy should be withdrawn, and the HDL-C level monitored until it has returned to baseline, and fibrate therapy should not be re-initiated.

6 ADVERSE REACTIONS

The following serious adverse reactions are described below and elsewhere in the labeling:

Mortality and coronary heart disease morbidity [see Warnings and Precautions (5.1)]
Hepatoxicity [see Warnings and Precautions (5.2)]
Pancreatitis [see Warnings and Precautions (5.7)]
Hypersensitivity Reactions [see Warnings and Precautions (5.9)]
Venothromboembolic Disease [see Warnings and Precautions (5.10)]
Page 1 of 4 1 2 3 4

DrugInserts.com provides trustworthy package insert and label information about marketed drugs as submitted by manufacturers to the US Food and Drug Administration. Package information is not reviewed or updated separately by DrugInserts.com. Every individual package label entry contains a unique identifier which can be used to secure further details directly from the US National Institutes of Health and/or the FDA.

As the leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. Our material is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2023. All Rights Reserved.